
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597274

General Method for Evaluation of Alternating Tendency in
Copolymerization
George Stefanov Georgieva

a Department of Chemistry, University of Sofia, Sofia, Bulgaria

To cite this Article Georgiev, George Stefanov(1978) 'General Method for Evaluation of Alternating Tendency in
Copolymerization', Journal of Macromolecular Science, Part A, 12: 8, 1175 — 1195
To link to this Article: DOI: 10.1080/00222337808063182
URL: http://dx.doi.org/10.1080/00222337808063182

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597274
http://dx.doi.org/10.1080/00222337808063182
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J. MACROMOL. SC1.-CHEM., A12(8), pp. 1175-1195 (1978) 

General Method for Evaluation of 
Alternating Tendency in Copolymerization 

GEORGE STEFANOV GEORGIEV 

Department of Chemistry 
University of Sofia 
Sofia, Bulgaria 

A B S T R A C T  

A new method for deriving expressions for the mole fractions 
of alternating n-ads and the average lengths of the alternating 
sequences of n-component copolymers (n 2 2) was developed 
based on the apparatus of finite Markov chains. These charac- 
teristics a re  considered a s  indexes of alternating tendency for 
ncomponent copolymerization. A specific property of n- 
component copolymerization (n 2 3) compared with binary 
copolymerization is the fact that alternating n-ads might be 
constructed by two, three, or  more types of monomeric units. 
In order to express this specific property of three and multi- 
component copolymers the term, alternating order, is introduced. 
The method developed in the paper permits the alternating indexes 
to be determined differentially in dependence of alternating order. 
Expressions for the average lengths and the compositions of all 
possible alternating sequences starting with a given monomer 
unit and ending with unit found only at that position, a r e  derived 
a s  well. The alternating indexes for binary radical copolym- 
erization of styrene and methyl methacrylate and for ternary 
radical copolymerization of styrene, methyl methacrylate, and 
acrylonitrile were determined. 
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I N T R O D U C T I O N  

GEORGIEV 

The product of polymerization constants rlrz is the most frequently 
used index for evaluation of the alternating tendency in binary copolym- 
erization, A s  the value of this product tends to zero, the alternating 
tendency increases [ 1, 21. The value of the product r l r z  will  be 
zero in two cases: when one of the constants is zero, o r  when both of 
them a re  zero. In the first  case (for r l  = 0) the copolymer chain is 
built of isolated units of one of the monomers (MI in this case), 
separated by sequences of units of the other monomer. The average 
length of these sequences is greater than unity. In the second case 
(r l  = r2 = 0) a strictly alternating copolymer, MlMz -. . . -MIMz -, 
is obtained. Therefore, the condition rlrz = 0 does not guarantee 
in all cases a strictly alternating copolymer formation. 

I consider that the arithmetical mean length of the homoblocks 
-M.M.-. . .-M.-M.- ( tii, i = 1,2) is more convenient a s  an alternating 

1 1  1 1  
tendency index for binary copolymers [ 31 : 

- c tii/2 = ' / z  f 1/(1 - P..) 
11 i= 1 Q11,22 - i=l 

where p.. a r e  the conditional probabilities for an i-monomer joining 
the i-propagating radical. 

11 

P..  = r.u./(l + r u ) 
11 1 1 i i  i = l , 2  

ui = [ Mil /[ Mj 1 i, j = 1, 2 (3)  

The more the average length is greater than unity, the weaker 
the alternating tendency observed. For a strictly alternating copoly- 

- 1. The advantage of this mer p.. = 0, and consequently P 

index compared with the product of copolymerization constants r lr2 
is that it allows one to evaluate separately the ability of alternating 
chaining together in the macromolecule; when e = 1 (i = 1, 2), then ii 
the i-monomer joins in isolated position in the macromolecule; the 
more P is greater than unity, the weaker the ability for alternating 
propagat ion. 

inconvenient when treating ternary and multicomponent copolymeriza- 
tion processes. Actually for the ternary copolymerization six 

11,22 - 11 

ii 

Both the indexes for alternating tendency described above a r e  
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EVALUATION OF ALTERNATING TENDENCY 1177 

copolymerization constants exist: r12, r13, r21, r23, r31, r32; the 

probability their product has a value tending to zero when every 
multiplicand alone is different from zero i s  greater than that for 
binary copolymers. The average lengths of homoblocks Qii ( i  = 1, 2, 
. . ., n) in this  case a re  better indexes for alternating tendency, a s  
they give differential evaluation for the ability of the monomers for 
alternating joining in the macromolecule. 

These lengths, however, and to a greater extent, the product of 
copolymerization constants, do not express the  different possibilities 
for alternating propagation of the  macromolecule for ternary and 
multicomponent copolymers. In fact, even for ternary copolymers, 
the alternating sequences may differ, for example, in the environment 
of every monomer part; whether it i s  surrounded by two identical . . .M.M.M.. . . (i, j = 1, 2, 3; i f j )  or by two different . . .M.MiMk. . . 
(i, j ,  k = 1, 2, 3; i # j # k) monomer parts. It is clear that for 
quaternary and multicomponent copolymers these possibilities a r e  
much more, and the indexes for alternating propagation of macro- 
molecule described above give no information for their realization. 

In th i s  respect, the two new alternating tendency indexes for 
binary copolymerization suggested by Tada, Fueno, and Furukawa 
[ 41 seem to us more suitable: the mole fractions of the diads 
MlM2 (F12), M2M1 (FZ1), or  of triads MlM2Ml (F121), M2M1M2 

(F ) and the average lengths of the alternating sequences 
-M M -. . .-M M - ( P 1 2 , 2 1 ) .  They a re  easily expressed by the 

copolymerization constants and the monomer feed composition. 

I 1 1  1 

212 

1 2  1 2  

12,21= 2/(pll + p22) P 

where the conditional probabilities pii ( i  = 1, 2) a r e  determined by 
Eq. (2 ) ,  and p.. (i, j = 1, 2; i # j )  a r e  determined by Eq. (7): 

11 

P.. = 1/(1 + r.u.) i , j = 1 , 2 ; i # j  (7) 
11 1 1  

It is evident that i f  the conditions r l  - 0 and r2 - 0 a r e  fulfilled, then 
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1178 GE ORGIEV 

it  follows F12 + F21 - 1, F121 + F212 - 1 and !$2,21 - m. That 
corresponds to the composition of a strictly alternating copolymer. 
The closer mole fractions F12 + F21 and F121 + F212 a r e  to zero, 
and the nearer length Q.12,21 is to unity, the weaker the alternating 
tendency observed. The relation among these indexes and the mono- 
mer feed composition is discussed in detail in the work mentioned 
above [ 41. 

The method used for deriving the above mentioned indexes Eqs. (4)- 
(6)] is not applicable to determination of alternating indexes of n- 
component copolymerization when n 2 3, especially for the average 
lengths of the alternating sequences ( P i  . ) for which even 
binary copolymerization Eq. (6) is only a conditional equality. In 
the present paper this limitation is overcome by using the Markov 
finite chains apparatus, and expressions a re  obtained for alternating 
tendency indexes for n-component copolymerization when n 2 3. 

9 1 ,  9 .  .,m 

R E S U L T S  AND DISCUSSION 

Simulating the copolymerization process using the Markov finite 
chains is an effective method for obtaining some important charac- 
teristics of this reaction [ 5-71. At first  the relations for alternating 
indexes for binary copolymerization will  be discussed by means of 
such a model. The mole fraction expressions F . and F... [ i, j = 1, 2; 

i f j ;  Eqs. (4) and (5)] a r e  easily obtained if the propagating macro- 
molecule is simulated with a second- or  third-order regular Markov 
chain [ 51. The elements of their transition matrixes (P2 and P3) 
a r e  the corresponding probabilities for transition from a diad (i, j )  
in one or from a triad (i, j, k) in another, respectively. 

il 11 1 

Pz = 

- -  
The eigenvectors of these matrixes (z2 and (Y3): a2 = (Y P and z3 = 

'Y3P3 [ 51, a re  of interest for our study. The elements of these vectors 
represent the mole fractions of the diads and triads (F . and F...; 

2 2  

iJ 11 1 
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EVALUATION OF ALTERNATING TENDENCY 1179 

P3= (122) 

(221) 
(211) 
(121) 
(212) 

0 

PI1 0 p 12 

0 0 

PI1 0 P 12 

0 Pzz 0 0 PZl 0 
0 0 0 0 0 

PI1 0 PI2 0 0 0 
0 0 0 0 0 

0 0 0 PZZ 0 0 

i, j = 1, 2; i # j) in binary copolymer, and the expressions coincide 
with the right-hand sides of Eqs. ( 4 )  and (5). 

-MlM2-. . .-M M -, it is necessary for the Markov absorbing chains 
to be applied to the regular Markov chains studied [ 51. For this pur- 
pose the states corresponding to the nonalternating diads (11) and (22) 
a re  assumed a s  absorbing. The transition matrix of the absorbing 
Markov chain results from the transformation of matrix P2 [ Eq. (8)]. 

In order to calculate the average length of the alternating sequences 
1 2  

From the latter, the fundamental matrix for these absorbing Markov 
chain is derived: N = (I - Q ) - ' ,  where Q is a submatrix of the matrix 
P mentioned above, obtained after elimination of rows and columns 
corresponding to the absorbing states, and I is the single matrix. 
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1180 GEORGIEV 

(12) 

(21) 

- 
7 =  

The elements of this matrix (n..) determine the average number of 
diads of the type shown above the corresponding (j-th) column of the 
matrix in the alternating chain, beginning with the diad shown in the 
left side of the corresponding (i-th) matrix row, and finishing with 
one of the nonalternating diads, (1 1) or  (22). The sum of the matrix 
(N) elements by rows gives respectively the average lengths (numbers 
of diads) of the alternating sequences M1M2-. . .-M1M2- or  
-M M -. . .-M2M1- differing in the type of the initial diad. If the 
single vector is denoted by 
with elements equal to these average lengths. 

11 

2 1  
then the product %- gives the vector 7 

(1 + PZl)/(l - PlZPZI) 

(1 + P12)/(1 - PlZPZl) i 
When r l  - 0 and r2 - 0, then P12 - 1 and PZ1 - 1, and it is clear 
that then the average lengths of the two alternating sequences tend 
to infinity. This corresponds to a strictly alternating copolymer. 

It should be noted that the average lengths of the alternating 
sequences with different initial diads (elements of the vector 7 )  
together with their composition (elements n.. of matrix N) is a fur- 
ther new information for the alternating chains in the binary copoly- 
mer  which have not been obtained till now. 

In order to obtain the expression for the average length of the 
alternating sequence -M1M2-. . .-M1M2- (i # j; i, j = 1, 2) despite 
their starting, it is enough to summarize the elements of the vector 7, 
previously multiplied by the weights, equal to the mole fractions of 
the corresponding initial diads in the macromolecule. In fact, this 
means the vector 7 must be multiplied scalarly by the vector ii = 
(F12, Fzl), in this case the vector of the stationary distribution of 
the alternating diads (12) and (2 1). Obviously, the number of diads in 
a sequence is smaller by a unit than the number of monomer units in 
it. Hence, the average length mentioned above expressed by the 
number of the monomers units wil l  be a s  follows: 

4 

2 +PI2 +PZI 

1 +PlZPZl 
(13) 

P12PZ 1 

PI2 +PZl 

_ _  
a12,21 = 7r 

= 

For a strictly alternating copolymer, a s  already shown above (rl - 0) 
and r2 - 0) a12,21 - 
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EVALUATION OF ALTERNATING TENDENCY 1181 

Consequently by using Markov finite chains, expressions were 
derived for the indexes suggested by Tada, Fueno, and Furukawa [ 41 
for the alternating tendencies of binary copolymers. Moreover, by 
using this method, additional information for the average lengths 
and composition of alternating sequences, beginning with a given 
initial diad can be obtained. Only simple operations of matrix algebra 
a re  used, which i s  another advantage of the method. 

However, the main advantage of the method developed i s  that it 
allows the expressions to be obtained for similar indexes of alternat- 
ing tendency of n-component copolymerization when n 2 3. In this 
case, the alternation can be realized among 2, 3, . . . , n monomer 
particles. In order to describe this feature of multicomponent 
copolymerization the term "alternating order" should be introduced. 
The alternating order for n-component copolymer i s  determined by 
the number of different type particles forming the n-ads. It i s  evident 
that the maximum alternating order i s  n-th (all particles in the alter- 
nating n-ads a re  different). The minimum value of alternating order 
i s  second (alternating n-ads a r e  composed of two different types 
particles). 

For example, for ternary copolymer, the alternating triads of 
third order a re  (123), (132), (213), (231), (312), and (321). The triads 
consisting of two different types of particles where there a r e  no two 
identical adjoining particles a re  alternating of second order. These 
a re  the triads (121), (212), (131), (313), (232), and (323). The sum of 
the mole fractions of the triads, mentioned earlier, determines the 
first alternating index for the ternary copolymer from third order. 
The sum of the mole fractions of the triads of the second type deter- 
mines the first alternating index for the ternary copolymer from the 
second order, The total sum gives the first index for the general 
alternating of the copolymer. 

To calculate these mole fractions in the ternary copolymer it i s  
necessary for the propagating chain of the copolymer to be compared 
with the regular Markov chain of third order. In the case when the 
first alternating index for n-component copolymerization i s  deter- 
mined, it is necessary to operate with a Markov chain of n-th order. 
The transition matrix of this chain is  given in Eq. (14). It i s  evident 
that for a ternary copolymer six triads possess third-order alter- 
nation and six others, second-order alternation. To determine their 
mole fractions it is  necessary to find the components of the limiting 
vector (Y = (YP. More specifically, the components a22, a23, . . . , a27 
give the mole fractions F123, F132, F213, F231, F321, and F312 and 

the components a16, . . . , a21 give the mole fractions of the triads 

with alternating of second order: F121, F131, F212, F232, F313 and 

F323. They are expressed by the transition probabilities p.. (i, j = I, 
2, 3) as follows. 

11 
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EVALUATION OF ALTERNATING TENDENCY 1183 

For triads of third order alternation: 

For triads of second-order alternation: 

Fsj3 = (P  P. /A) I P13(1 + PI2 - P22) - P (P 31 13 12 13 - '23)' 

j = 1 , 2  (20) 

In the above expressions, A stands for the following determinant: 

1 + P l Z  - Pzz Pi2 - p32 
A =  

PI3 - p 2 3  1 +PI3 - p S 3  

The sum 

Fijk 
i, j ,k=l  
i#k; 
i#j #k 
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1184 GE ORGIEV 

defines copolymers of third-order alternation and the sum 

i Ffii 
i,k=l; 
i#k 

describes second-order alternation. It is easily shown that when r - 
0 (i, j = 1, 2, 3; i # j), the total alternation of copolymer determined by 
the sum of mole fractions of all possible triads tends to unity. In such 
a way the problem for determining the f i rs t  index of alternation of a 
ternary copolymer is solved. 

of this index as a function of the alternating order in the copolymer. 
That is one of i ts  advantages. 

In order to determine the average lengths of the sequences con- 
sisting of third-order alternating triads P.. ( i  # j # k; i # k; i, j, k = 

1, 2, 3) and second-order alternating triads fiki ( i  # k; i, k = 1, 2, 3) 
i t  is necessary to apply the Markov's absorbing chains to the regular 
chain studied. For example, if the average length of third-order 
alternating sequences should be determined P.. (i, j, k = 1, 2, 3, 
i # j # k, j # k), it is necessary to transform into absorbing chains 
all states which do not correspond to third-order alternating triads. 
If the absorbing state to which the chain is converted after the ending 
of the alternating sequence of third order is of interest, the transition 
matrix P3 (here and further the subscript wil l  show the alternating 
order) will be [ 51 as shown in Eq. (22). The absorbing state which 
includes all the remaining 21 states of the starting regular Markov 
chain (corresponding to second-order alternating or  nonalternating 

i j  

Obviously the method developed allows a differential calculation 

11 k 

11 k 

PI 

II (123) (132) (213) (231) (312) (321) 
1 0  0 0 0 0 0 

0 0 PSl 0 0 
0 0 

0 PZl 
0 0  0 PI3 0 0 

(22) 
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EVALUATIONOF ALTERNATING TENDENCY 1185 
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1186 GE ORGIEV 

triads) is defined by the symbol II. The fundamental matrix of the 
absorbing Markov chain so obtained (N3) is to be found by the same 
method a s  it is for the binary copolymers. 

meaning as have the elements of the fundamental matrix of the 
absorbin Markov chain which simulates the binary copolymerization 
[ Eq. (11fi. For example, the element n44 = (1  - f 

average number of triads of the type (231) in the alternating sequences 
beginning with the triad (23 1) and ending with second order alternating 
triad or  with nonalternating triad. 

The zero elements of the matrix mentioned result from a cycle 
formation between the third-order alternating triads, for example, 
(123) - (231) - (312) - (123), which excludes the formation of some 
triads in sequences mentioned above [ t r iads  (132), (213), and (321) 
in the case discussed]. 

The elements of this matrix [ Eqs. (23) and (24)] have the same 

shows the 123 

The vector 73 = N T  has the following components: 

They determine the average lengths of the third-order alternating 
chains (the number of triads) which have a s  initial triads the triad 
shown at the left of the vector's 73 components. A s  in the two- 
dimensional case, the sum 2 +73n (where 7 i s  the vector with com- 
ponents equal to the mole fraction of the initial diads) gives the 
average length ( P ijk) (number of units). 

,(3) = 1 3 
ijk + '3 F123 + 732F132 + '3 F213 + '34F231 + '35F312 

+ '36 F321 i, j ,  k =  1, 2, 3; i # j  f k ;  i f k  (26) 

i where the T~ (i = 1,. . ., 6) a re  the components of the vector 73, and 
F.. a r e  the mole fractions of the corresponding triads in copolym- 
erization chain [ Eqs. (15)-(17)]. The superscript of the sumbol P i j k  
shows the alternating order. 

(3) 11 k 
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EVALUATION OF ALTERNATING TENDENCY 1187 

(121) 

(131) 

(212) 
Nz = 

(232) 

(313) 

(323) 

Analogously, the expression for the average length of the second- 
order alternating chain is obtained. In this case the transition and 
fundamental matrixes of the absorbing Markov chain, the vector, and 
the average lengths of the alternating sequences of second order P. .. 

11 1 (i, j = 1, 2, 3; i # j )  a re  expressed a s  in Eqs. (27)-(30). 

(l-f12)-l 0 P 12 0 0 0 

0 (1  - f31)-' 0 0 p 13 0 

PZl 0 ( l - f 1 2 ) - l  0 0 0 
(1 - f 12)-l  

( l - f l z )  

( 1 - f 3 1 ) - '  

0 0 0 (1  - f23)- '  0 P23 

0 p3 I 0 0 (1 - f31)" 0 
(1 - f31) - '  

0 0 0 p32 0 
(1 - f23 ) - l  

= I  
(121))  

lI (121) (131) (212) (232) (313) (323) 
1 0  0 0 0 0 

0 0  0 P I 2  0 0 

0 0 

p3 I 0 

0 0  0 0 p32 
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4F + r 5F (2) = 1 2 3 
'2 F121 + '2 F131 + '2 F212 + '2 232 2 313 P .  .. 

11 1 

+ ' t F323  i, j = I, 2, 3; j # i 

i where r2  (i = 1, . . ., 6) a r e  the components of the vector y2, Fijk a re  
the mole fractions of the second-order alternating triad [ Eqs. (18)- 
(20)], and f.. = f. = p..p... The elements of the matrix N2 and the 

vector F2 have the same interpretation as the corresponding quantities 
characterizing the third-order alternating chains. The zero elements 
of the matrix N2 result from cyclization in the formation of second- 
order alternating sequences, for example, (121) - (212) - (121) and 
therefore n12 = n15 = n14 = n16 = 0. 

There a re  no difficulties, in principle, of determining the average 
lengths of sequences consisting of third- as well as second-order 
alternating triads. However, in this case the fundamental matrix 
N is of 12 range (in this case all 12 alternating triads have to be 
considered). It is found according to the procedure already known 
starting from the transition matrix P23 of the absorbing Markov chain. 
The last matrix, Eq. (31), is derived from the matrix of Eq. (14) after 
transformation of all states corresponding to nonalternating triads 
into absorbing. 

11 J i  11 I 1  

2Y3 

t 
0 1 

It is convenient that this matrix be expressed in block form 
[Eq. (3211: 
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(iji) (ijk) 

P = (iji) 
293 

C 

where (iji) denotes in this case all possible tr iads of second-order 
alternation and (ijk) denotes all possible tr iads with third-order 
alternation. According to the Frobenius formula [ 81) the fundamental 
matrix might be expressed as in Eq. (33) 

N2 + N2BH- CN2 

N 273 = (I-Q 293 = [ 
12;) H- ' CN2 (33) 

where 

H = (I  - Q3) - CN2B (34) 

and N2 and Q3 a r e  the matrixes determined by the expressions (28) 

and (22). 
will possess the components: The vector 3 

293 
12 

i , j = l ,  . . .  ) 1 2  (35) 

where n..(i, j = 1, . . .) 12) a r e  the elements of the fundamental matrix 

N 

of alternating sequences with alternation arbitrari ly chosen on the 
condition that their construction s ta r t s  with one of the twelve alternat- 
ing triads. In order to determine the average length of all possible 
alternating sequences composed of second-order and third-order 
alternating triads (independently of the starting of the sequences) it is 
enough to multiply the elements of 7 

fractions of the starting triads of these sequences and to summarize 
these products: 

11 
[ Eq. (33)]. These elements a r e  interpreted too as average lengths 

293 

by the corresponding mole 
273 
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12 

Q!293) = 2 +c  (nijF123 + n2jF131 + n3jF212 + n4j F232 
11 k j = l  

The expressions obtained for Qijk [ Eq. (26)], tiji  [ Eq. (30)] and 

'ijk 
sequences of the ternary copolymer; alternating sequences of third, 
second, and mixed second and third order. This fact underlines 
once again the greater possibilities of the method proposed for 
characterizing the tendency to alternation of the multicomponent 
copolymers. 

This method is easily applicable to 4-, 5- and multicomponent 
copolymers. For n-component copolymer it is necessary to take 
into account the different (their number is nn) n-ads. From the defi- 
nition of the alternating order it follows that the formation of n-ads 
of n-th, (n - 1)-th . . . and second alternating order is possible. For 
determination of their mole fractions (F ) the average lengths 
and compositions of alternating sequences built from the above shown 
nads,  the procedure already used should be applied for determination 
of the limiting vector from the transition matrix of regular Markov 
chain of n-th order simulating the copolymerization process, then 
the elements of the fundamental matrix (N) of the absorbing Markov 
chain (the latter being obtained after transformation of the states 
corresponding to nonalternating n-ads into absorbing ones). 

mined a s  an illustration. In Fig. 1 the relationship of the mole frac- 
tions of the diads F . (curves 1 and 3) and of the mole fractions of 
the triads F... (i, j = 1, 2; i # j )  (curves 2, 4, and 5) versus the prod- 
uct of copolymerization constants a r e  shown. Two different cases  
a re  shown when the constants are equal (r = r ) (curves 1 and 2) 
on one hand, and on the other hand when they differ from one another 
under the condition that r l  = 1.0 (curves 3, 4, and 5). As should be 
expected, with the increase of the product above the mole fractions 
of the alternating diads and triads decrease, and the alternating 
tendency decreases as well. It is evident too, that in the general 
case the mole fractions of the alternating diads and triads on copolym- 
erization with equal constants a r e  higher than those of copolymerization 
with different constants. 

[ Eq. (36)] determine the average lengths of all types alternating 

i, j ,  .. .,n 

The indexes above shown for binary copolymerization a re  deter- 

il 

11 1 

1 2  
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0 
0 0.2 0.4 0.6 0.8 4 0 ‘tr2 

FIG. 1. Dependence of the mole fractions of the alternating diads 
(Flz = F z  and triads (Flz I and FZ 1 2 )  vs. the product of copolymeri- 
zation constants (rlrz) for binary radical copolymerization of styrene 
( M I )  and methyl methacrylate (Mz):  (1 )  FIZ = FZI  (when r l  = rz);  
(2 )  FlzI = F z l z  (when r l  = rz);  (3) F l z  = F z l  (when rl # r z ,  rl = 
1.0); (4) F I Z I  (when r l  # rz, r l  = 1.0); (5) F z l z  (when 
rl # r z ,  rl = 1.0). 

Figure 2 shows the relationship of the other alternating indexes 
(the average lengths of homoblocks and alternating sequences P ii 

and P12,21; (i = 1, 2)  and the copolymerization constants product, 
The average lengths of the homoblocks p l 1  and P~~ (and consequently 
rill 22  also) (curves 1, 3, and 4 )  increase, while the average lengths 

of alternating sequences P12,21  (curves 2 and 5) decrease with 
increasing product of the copolymerization constants. This fact shows 
that these indexes a r e  suitable for evaluation of the alternating tend- 
ency. In this case, too, for binary copolymerization with equal con- 
stants the length of the alternating sequences (curve 2)  is greater 
than that for copolymerization with different constants (curve 5). 

In Table 1 the relationships of the alternating tendency indexes 

of the corresponding absorbing Markov chains (n..; i, j = 1, 2 )  versus 
the monomer feed composition are shown for radical copolymerization 
of styrene (M1) and methyl methacrylate (M2) a t  60°C [ 91. It is seen 

) and the elements 

9 
( ‘11’ ‘22’ ‘11,229 F12’ F21’ F121’ F212’ 5 2 , 2 1  
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11,L 221 

GE ORGIE V 

0 1  . . . . . , , , . , - 
0 02 0 4  06 0 8  4.0 r , r2 

FIG. 2. Dependence of average lengths of homoblocks . . .MiMi. ... 
1 2"' Mi. . , ( Pii, i = 1, 2) and alternating sequences . . .M1M2. . .M M 

( R ~ ~ , ~ ~ )  vs. product of copolymerization constants (r r ) for binary 
radical copolymerization of styrene (M1) and methyl methacrylate 

1 2  

from Table 1 that the indexes P 11,22; P12,21; F12 = F21 show that 
the alternating tendency is most strongly expressed for equimolar 
monomer feed composition. The mole fractions of the alternating 
triads (Flzl  and Fz12) do not give an unequivocal solution to this 

2 12 problem (F121 reaches i ts  maximum value at [ M1] = 0.6 and F 
at  [ M1] = 0.4). Therefore these mole fractions cannot serve as an 
adequate basis for evaluating the dependence of the alternating tend- 
ency on the monomer feed composition. Evidently, these data a r e  
important quantitative characteristics of the triad copolymer compo- 
sition. The data for the homoblock lengths ( t l l  and P ~ ~ )  have 
analogous meaning, while their arithmetic mean is an undeformed 
evaluation of alternating tendency. 
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The elements of the absorbing matrixes [ Eq. (7)] summarized in 
Table 1 show the composition of different alternating sequences. For 
example, all elements n12 give the average number of diads (21) in 
the alternating sequences -M1M2-. . .-M1-M2-, starting with the 
diad (12). Evidently, the diagonal elements of this matrix read their 
maximum values at equimolecular feed composition, and thus they 
also provide undeformed evaluation for the alternating tendency. 

indexes for alternation of the ternary radical copolymerization of 
styrene (M1), methyl methacrylate (M2), and acrylonitrile (M3) at 

the following monomer feed compositions a re  calculated: [ M ] = 1 
0.359; [ M a ]  = 0.360; [M,] = 0.281; r12 = 0.50 i 0.02; r13 = 0.41 f 
0.08; r21 = 0.50 i 0.02; r23 = 1.20 f 0.14; r31 = 0.04 f 0.04; r32 = 

0.15 f 0.07 [ 91. The results for the average lengths of the homoblock 
areas  are Qll = 1.25; P 2 2  = 1.30; P 3 3  = 1.02. The greatest value for 
the average length of homoblocks of methyl methacrylate ( Q 2 2 )  corre- 
spond to the following order of increasing products of copolymeriza- 
tionconstants: r21r23 > r12r13 > r31r32. 

(Fz13 = 0.071, F123 = 0,008, F132 = 0.009, F231 = 0.045, F312 = 

0.119, F321 = 0.043) and the second-order triads (F212 = 0.075, 

A s  an example of ternary copolymerization, the above-mentioned 

By using Eqs. (15)-(21) the mole fractions of the third-order triads 

F232 = 0.012, F121 = 0.025, F131 = 0.033, F313 = 0.113, F323 = 0.014) 
were calculated. It is evident that the amount of triads starting from 
the diad (31); (F312 = 0.119, F313 = 0.113) is the highest, which may be 
explained by the fact that the copolymer constant r31 = 0.04 f 0.04 
has the lowest value. 

By using Eqs. (26), (30), and (36), the average lengths of alternation 
sequences from third ( P  ijk(3) = 2.43), second ( P  ...(2) = 2.53) and 
mixed second and third order ( P  iji (2y3) = 2.97) were determined. The 
fact that these values are smaller than 3.0 shows that a macromole- 
cule exists which does not contain such triads, These indexes allow 
evaluation of the alternating tendency of various ternary copolymers 
from a comparison of the average lengths of alternating sequences 
from the corresponding order. 

11 1 

CONCLUSIONS 
The term "alternating order" for n-component copolymer (n 2 3) 

is proposed by means of which a more detailed evaluation of alternat- 
ing tendency is reached. 
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EVALUATION OF ALTERNATING TENDENCY 1195 

By using the method of Markov finite chains, relations for alternat- 
ing tendency for ternary and multicomponent copolymerization a r e  
obtained. The relation for similar indexes of binary copolymeriza- 
tion proved to be particular cases of the generalization stated above. 

The elements of the fundamental matrixes of the corresponding 
absorbing Markov chains allow conclusions to be drawn for the com- 
position of all possible alternating sequences in the copolymer. 
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